Shortest Descending Paths through Given Faces

نویسندگان

  • Mustaq Ahmed
  • Anna Lubiw
چکیده

A path from s to t on a polyhedral terrain is descending if the height of a point p never increases while we move p along the path from s to t. No efficient algorithm is known to find a shortest descending path from s to t in a polyhedral terrain. We give some properties of such paths. In the case where the face sequence is specified, we show that the shortest descending path is unique, and give an 2-approximation algorithm that computes the path in O(n log( 12 )) time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single-Point Visibility Constraint Minimum Link Paths in Simple Polygons

We address the following problem: Given a simple polygon $P$ with $n$ vertices and two points $s$ and $t$ inside it, find a minimum link path between them such that a given target point $q$ is visible from at least one point on the path. The method is based on partitioning a portion of $P$ into a number of faces of equal link distance from a source point. This partitioning is essentially a shor...

متن کامل

Approximate Shortest Descending Paths

We present an approximation algorithm for the shortest descending path problem. Given a source s and a destination t on a terrain, a shortest descending path from s to t is a path of minimum Euclidean length on the terrain subject to the constraint that the height decreases monotonically as we traverse that path from s to t. Given any ε ∈ (0, 1), our algorithm returns in O(n log(n/ε)) time a de...

متن کامل

Shortest Gently Descending Paths

A path from s to t on a polyhedral terrain is descending if the height of a point p never increases while we move p along the path from s to t. We introduce a generalization of the shortest descending path problem, called the shortest gently descending path (SGDP) problem, where a path descends, but not too steeply. The additional constraint to disallow a very steep descent makes the paths more...

متن کامل

Shortest Anisotropic Paths on Terrains

We discuss the problem of computing shortest an-isotropic paths on terrains. Anisotropic path costs take into account the length of the path traveled, possibly weighted, and the direction of travel along the faces of the terrain. Considering faces to be weighted has added realism to the study of (pure) Euclidean shortest paths. Parameters such as the varied nature of the terrain, friction, or s...

متن کامل

An Approximation Algorithm for Shortest Descending Paths

A path from s to t on a polyhedral terrain is descending if the height of a point p never increases while we move p along the path from s to t. No efficient algorithm is known to find a shortest descending path (SDP) from s to t in a polyhedral terrain. We give a simple approximation algorithm that solves the SDP problem on general terrains. Our algorithm discretizes the terrain with O(nX/2) St...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comput. Geom.

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2006